Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation.

نویسندگان

  • N Shirato
  • J Strader
  • A Kumar
  • A Vincent
  • P Zhang
  • A Karakoti
  • P Nacchimuthu
  • H-J Cho
  • S Seal
  • R Kalyanaraman
چکیده

Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage, transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are potential candidates for improved H2 sensor performance. The single directional conducting continuous nanowires can decrease electrical noise, and their large active surface area could improve the response and recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness h0 and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent of h0 for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating was performed. This showed that the temperature rise under laser heating was a strong non-monotonic function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs, eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that several unique synthesis approaches can be utilized to control the nanowire characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of SR Irradiation on Tin-Doped Indium Oxide Thin Film Prepared by RF Magnetron Sputtering

Tin-doped indium oxide (ITO) thin films have been widely used as transparent electrodes of flat panel displays and solar cells because of its low electrical resistivity and high transmittance to visible light. In order to improve the electrical and optical properties of ITO thin films, many attempts have been carried out by means of several methods, for example, highly dense plasma assisted ele...

متن کامل

Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel.

Iron chromium oxide microspheres were generated by pulsed laser irradiation on the surface of two commercial samples of stainless steel at room temperature. An Ytterbium pulsed fiber laser was used for this purpose. Raman spectroscopy was used for the characterization of the microspheres, whose size was found to be about 0.2-1.7 μm, as revealed by SEM analysis. The laser irradiation on the surf...

متن کامل

Fabrication of a Au/Si nanocomposite structure by nanosecond pulsed laser irradiation.

A gold/silicon nanocomposite structure (NCS) was formed on a Si(100) surface by nanosecond pulsed laser irradiation. The Au/Si NCS contained both Au nanoparticles (NPs) and Au-Si alloy layers. We report that the use of laser irradiation to form Au NPs comprises two competing processes: a top-down effect involving decomposition into smaller NPs and a bottom-up effect involving self-assembly or s...

متن کامل

Engineering Au Nanoparticle Arrays on SiO2 Glass by Pulsed UV Laser Irradiation

We study semi-regular arrays of Au nanoparticles (NP) obtained via UV laser irradiation of thin Au films on glass substrate. The NP structures are prepared from films of a thickness up to 60 nm produced by discharge sputtering or pulsed laser deposition, and annealed by nanosecond laser pulses at 266 or 308 nm, respectively, at fluencies in the range of 60-410 mJ/cm2. For the rare- and close-pa...

متن کامل

Reshaping the Tips of ZnO Nanowires by Pulsed Laser Irradiation

Vertically aligned ZnO nanowires have been synthesized by a hydrothermal method. After being irradiated by a short laser pulse, the tips of the as-synthesized ZnO nanowires can be tailored into a spherical shape. Transmission electron microscopy revealed that the spherical tip is a single-crystalline piece connected to the body of the ZnO nanowire, and that the center of the sphere is hollow. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 3 3  شماره 

صفحات  -

تاریخ انتشار 2011